为了满足各种用户需求,近年来对图形布局的不同子任务进行了深入探讨。现有研究通常提出具有不同投入输出格式,专用模型体系结构和不同学习方法的任务特异性方法。但是,这些专业的方法使得适应了看不见的子任务,阻碍了不同子任务之间的知识共享,并且与设计通用模型的趋势背道而驰。在这项工作中,我们提出了Unilayout,该Unilayout以统一的方式处理图形布局生成的不同子任务。首先,我们统一地表示子任务的各种输入和输出作为令牌序列。然后,基于统一的序列格式,我们自然利用具有不同子任务的变压器的相同的编码器架构。此外,基于上述两种统一,我们进一步开发了一个同时支持所有子任务的单个模型。在两个公共数据集上的实验表明,尽管简单,单层虽然明显优于先前的特定于任务的方法。
translated by 谷歌翻译
我们提出了一种新型的动态约束不确定性加权损失,以实验处理平衡多个任务对ICML EXVO 2022挑战的贡献的问题。多任务旨在共同认识到声乐爆发中表达的情绪和人口特征。我们的策略结合了不确定性重量和平均动态重量的优势,通过用约束术语扩展权重以使学习过程更具解释。我们使用轻巧的多EXIT CNN体系结构来实施我们提出的损失方法。实验性H-均值得分(0.394)显示出比基线H均值得分的显着改善(0.335)。
translated by 谷歌翻译
在这项工作中,我们探索了一种小说的几弹性个性化体系结构,以进行情感发声预测。核心贡献是一个“注册”编码器,它利用目标扬声器的两个未标记的样本来调整情感编码器的输出。调整基于点产生的注意力,因此有效地充当“软”特征选择的一种形式。情感和注册编码器基于两个标准音频体系结构:CNN14和CNN10。这两个编码器进一步指导忘记或学习辅助情感和/或说话者信息。我们最好的方法在EXVO少量开发套件上达到了CCC $ .650 $,比我们的基线CNN14 CCC $ 2.5 \%$增加了$ .634 $。
translated by 谷歌翻译
车辆到基础设施(V2I)通信对于增强自动驾驶汽车(AV)的可靠性至关重要。但是,道路交通和AVS无线连接的不确定性会严重损害及时的决策。因此,至关重要的是,同时优化AVS的网络选择和驱动政策,以最大程度地减少道路碰撞,同时最大化通信数据速率。在本文中,我们开发了一个增强学习(RL)框架,以表征有效的网络选择和自主驾驶策略在传统的Sub-6GHz Spectrum和Terahertz(THZ)频率上运行的多波段车辆网络(VNET)中。所提出的框架旨在(i)通过自动驾驶的角度控制车辆的运动动力学(即速度和加速度)来最大化交通流量,并最大程度地减少冲突,以及(ii)通过共同控制车辆的交接,并最大程度地减少数据速率从电信的角度来看运动动力学和网络选择。我们将这个问题作为马尔可夫决策过程(MDP)提出,并开发了基于Q的深度学习解决方案,以优化给定AV状态的加速度,减速,车道变速器和AV基准站分配等动作。 AV的状态是根据AV的速度和通信渠道状态定义的。数值结果表明了与车辆运动动力学,交接和通信数据速率相互依赖性有关的有趣见解。拟议的政策使AVS能够采用具有改善连接性的安全驾驶行为。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译